当前位置: 绝缘体 >> 绝缘体前景 >> 戴希关于手性马约拉纳费米子最新实验数据的
导读
量子霍尔态是在二维运动的电子在极低温强磁场下所形成的一种非常特殊的物质态。在这一状态中,所有电子都相互锁住,只能遵循一个固定的模式跳集体舞(这一固定模式的集体舞就是所谓的拓扑序)。因为运动模式被锁住固定,所以量子霍尔态没有内部自由度。但二维量子霍尔态的一维边缘可以有运动的自由度,它就像水面上起伏运动的波。二维量子霍尔态的一维边缘波非常特殊:它只能沿着边界向一个方向跑。这一性质被称为手性(也叫手征)。最简单的量子霍尔态,其边界只有一支手性波(即一种波动模式),由一个玻色场描述。比较复杂的量子霍尔态,会有好几支手性波,由几个玻色场描述。
年我和Moore-Read用两种完全不同的方法独立发现了一种新的量子霍尔态(我的文章还早发表几个月),其边界只有半支手性波,由一个马约拉纳费米场描述。也就是说这半支手性波对应于一维手性马约拉纳费米子。我们当时还发现,在边界上的手性马约拉纳费米子意味着,在这种量子霍尔态的二维体中会出现一种全新的粒子,它带有非阿贝尔统计。也就是说这种新粒子,它既不是玻色子,也不是费米子,甚至不是带分数统计的任意子。它是一种更新更奇怪的粒子。这种非阿贝尔粒子有不受环境干扰的内部自由度,可用来存储量子信息,而不会由干扰引起信息丢失。因此我们可以用这种非阿贝尔粒子来制造拓扑量子计算机。由于它的重要性,目前有一些凝聚态物理学家在疯狂的搜寻这一新的非阿贝尔粒子。Moore和Read两人还因此项工作获得了年狄拉克奖。
年,Read和Green发现在二维p波超导体中,也会有非阿贝尔粒子,同时其边界也有伴生的一维手性马约拉纳费米子。到年,张首晟小组指出在最简单的整数量子霍尔态上覆盖超导薄膜,可以作为一种实际有效的办法来实现二维p波超导体,及其边界上的一维手性马约拉纳费米子(后来一维手性马约拉纳费米子和三维非手性马约拉纳费米子,这两种很不相同的粒子又被称为天使粒子。三维非手性马约拉纳费米子被物理学家苦苦搜寻了80年。而一维手性马约拉纳费米子的物理实现是年才提出来的,到现在只有28年)。这篇文章所讨论的工作,就是试图用整数量子霍尔态覆盖超导薄膜这一方法,来实现一维手性马约拉纳费米子。但对实验观测到的现象可有多种解释。一种解释是通过一维手性马约拉纳费米子,另外一种解释是通过平庸的短路机制。这篇文章讨论了这些观点的细节,用来评估目前的实验观测是不是真的意味着发现了一维手性马约拉纳费米子。
——文小刚
撰文
戴希(香港科技大学物理学系讲座教授)
几周前,王康隆组在Arxiv上贴了一篇文章,介绍了他们组重复实验的最新进展。此后,有不少业内的同行发信来问我的意见,即王组的最新实验到底算不算是已经重复了之前他们在Science上文章的结果?(Heetal.,Science,–(),下面也简称“何文”)一一回答太麻烦,所以我就索性写了这篇文章,也借此机会向大家介绍一下量子反常霍尔效应体系的一些相关知识。
磁学预备知识
此前王康隆组在Science上发表的证明手性马约拉纳费米子存在的关键性实验,是连续改变磁场下的两端电导σ^12测量。由于量子反常霍尔效应是一个铁磁体系,随着磁畴的出现和消失,在扫场测量的过程中,会出现大家都熟悉的磁滞回线,如图0所示。在高磁场下,磁化强度趋于饱和,意味着铁磁体系中基本只有一种方向(平行于外磁场)的磁畴,随着外场强度的下降,铁磁体系内开始出现反方向的磁畴,于是系统的总磁化开始下降。当外场变化到矫顽场(磁滞回线与横轴的交点)时,铁磁体系内的正反方向磁畴面积大致相等,对磁化的贡献互相抵消,于是体系的总磁化强度为零,然后随着磁场进一步沿反方向增大,反方向磁畴面积越来越大,直至反向饱和。所以磁滞回线的出现,在微观上是由两种磁化指向的磁畴之间的相对变化导致的,下面大家会看到,这一点对理解量子反常霍尔效应的物理非常关键。
图0:铁磁体中典型的磁滞回线。
1
两种不同的量子反常霍尔效应转变曲线
在讨论手性马约拉纳费米子的实验之前,有必要先介绍一下作为基础的量子反常霍尔效应(QAHE,QuantumanomalousHalleffect)。当然,理论上QAHE体系就是陈数非零的二维能带绝缘体,所以霍尔电导是量子化的平台。然而在实际的QAHE材料体系中,由于QAHE是伴随着铁磁态出现的,在扫场过程中会伴随磁畴的出现,从而不可避免地带来额外的复杂性。从年到现在各实验组的QAHE实验观测,基本上可以分为两类:
第一类QAHE转变的特征是随着外磁场转向,霍尔电导的平台直接从1跳变到-1,中间不产生霍尔电导为0的平台,如图1(a)所示。这种转变过程往往发生高质量的,空间均匀性非常好的样品中,样品内的磁畴相当大,可以在一个很小的外磁场窗口内,直接从正向饱和磁化翻转到反向饱和磁化。
而第二类的QAHE转变则如图1(b)所示,随着外磁场的转向,霍尔平台先从1转变为0,然后再从0转变为-1。第二类QAHE转变的重要特点,是在转变过程中产生了一个额外的零霍尔平台。这个零霍尔平台可以有多种理论解释,但本质上都是由体系内部磁化强度的空间不均匀性导致的,几种不同机制的区别只是在于主要的不均匀性发生在z方向,还是xy面内。对于大部分样品来说,这个零霍尔平台的起源可以归结为面内的磁畴结构导致的界面态渗流相变。
下面就来简单描述一下这样一个渗流相变发生的过程,为了简单起见,在每个区域内我们假设只存在不多于两种的不同磁畴。
图1:两类不同的QAHE退磁曲线
为了方便描述,我们先把如图1(b)所示的磁滞回线分为八段,分别用罗马数字I-VIII来标记。整个渗流转变过程可以用图2中相应的八个图很好地演示,在图2中,我们用蓝、白、绿三种颜色分别代表陈数为1,0,-1的三种拓扑态。在不同的外场下,由于样品的不均匀性导致局域的磁化强度不同,从而在样品内部有可能出现以上三种不同的磁畴。
图2:出现零电导平台时QAHE内部的渗流转变图像
(I)图中的I区对应高正向磁场,这时铁磁性的QAHE薄膜处于饱和磁化状态,体系不存在磁畴结构,其电子结构可以被近似看作一个空间均匀的陈数为1的能带绝缘体(在图2中用蓝色表示),并具有被局域在样品边界的手性边界态(在图2中用红色表示),如图2(I)所示。
(II)由于磁化强度随着外磁场下降,体系进入II区,此时体系内开始大量出现陈数为0的区域(在图2中用白色表示),在白色和蓝色区域之间,是陈数分别为1和0的不同拓扑态之间的边界,因此也会出现手性边界态。这些新出现的样品内部的手性边界态跟原先存在的整个样品跟真空之间的手性边界态并无什么不同,因此这些互相接近的边界态之间可以通过杂质散射相互耦合,从而在样品中导致了背散射,在直流输运实验上体现出来的,就是电导偏离量子平台,如图1(b)中的II段所示。同时,在这一阶段,由于陈数为零的区域也会出现在样品的边缘,导致原先被严格限制在边缘的跨越整个样品的长程边缘态与新出现的边界态产生杂化、重组,从而使得最后重组后的长程边缘态逐渐扩展到样品内部,如图2(II)中的红线所示。
(III)随着白色区域的不断增加,彼此联通,导致样品内部出现典型的渗流转变,转变之后体系内部如图2(III)所示,所有的边界态都只围绕着一些陈数为1的孤岛,而此前一直存在着的横跨整个样品的边界态则消失了,包括样品内部和边界在内的体系整体上变成了绝缘体,反映在直流输运上,就是图1(b)中III段的零电导平台。需要强调的是,从II到III的转变,既可以看成是白色(陈数=0)和蓝色(陈数=1)区域联通状态的切换,也可以等价地看成是连通整个样品的长程边界态的演化和消失的过程。在这一过程中,在连通整个样品的长程边界态消失之前,伴随着边界本身的结构从整齐划一变为支离破碎,长程边界态从严格被限制在边界附近,首先演化为逐步深入到样品内部,最后随着白色磁畴的增多而彻底消失,所有手性边界态都被限制在一个个“孤岛”周围。这一特征对下面要谈到的“手性马约拉纳边界态”的实验至关重要。好了,讲明白了从I区到III区的转变过程,大家就可以类推从III到V的过程了,这里就不累述了,参看图2(IV)到(V)。
讲到这里先总结一下,在实际材料中其实不大会出现图2(I)那样的理想情况,但只要图2(II)中出现的陈数为0的白色区域相对较少,并大多远离样品的边缘,在这种情况下样品中还是存在着横跨整个样品的整体手性边界态,并且基本不存在背散射,在直流输运上还能维持e^2/h的量子电导。因此,e^2/h的量子电导平台可以看作是样品内部“拓扑相”(蓝色)包围“平庸相”(白色)的后果;反过来,中间出现的零电导平台则是“平庸相”包围“拓扑相”的后果。需要注意的一点是,在实际材料中,在某些情况下三种不同的相会同时出现,也可能存在第四种磁畴,即金属性的磁畴,这里为了简单起见,忽略了这些可能性,而只保留了当前外场下的两种主要的相。
2
手性马约拉纳费米子的理论预言
在评论UCLA的实验数据之前,我还想先简单介绍一下Stanford张首晟组之前的理论预言。对熟悉量子反常霍尔效应理论的同学来说,理解这一理论工作是相当容易的。在我们当初提出磁性拓扑绝缘体QAHE的Science文章中,有一个简单的理论模型来解释此类体系中的QAHE[参看DOI:10./science.,公式(2)和(3)]。在那篇工作中,我们指出,磁性拓扑绝缘体薄膜的低能模型,可以由两个通过隧道效应耦合在一起的、分处上下两个表面的二维狄拉克电子态来描写。当这一体系进入铁磁态之后,上述电子态还将感受到一个磁化带来的Zeeman耦合项。对于二维狄拉克电子态来说,上下表面之间的隧道效应Δt和Zeeman耦合Δz是打开能隙的两种不同方式,当ΔtΔz和ΔzΔt时,体系分属陈数为0(平庸)和1(拓扑)的态,而当Δt与Δz差不多可比时,则发生陈数从0到1的转变。
当QAHE体系之上被覆盖了一层超导薄膜以后,通过超导膜的邻近效应,QAHE中的二维狄拉克电子态又有了第三种打开能隙的机制,即通过超导配对势Δp来打开超导能隙。于是,三种不同的能隙打开方式导致了三种不同的拓扑态,在张首晟组的文章中(参见
转载请注明:http://www.aideyishus.com/lkcf/5537.html