当前位置: 绝缘体 >> 绝缘体优势 >> 进展基于磁性绝缘体的磁子阀效应
面向后摩尔时代的信息存储与逻辑运算需求,自旋电子器件在开发下一代具有更小单元尺寸、非易失性、低功耗和高速度的微电子器件中提供了具有广阔前景的发展方向。其中,自旋阀是各类自旋电子器件的核心单元,自旋阀通常包括两层铁磁金属和非磁中间层构成的三明治核心结构,由于自旋极化电子在两铁磁层间的输运,从而使器件的电阻受到两铁磁层相对取向的调制。基于自旋阀结构的室温巨磁电阻(GMR,年)和室温隧穿磁电阻(TMR,年)器件,已经广泛应用于磁性硬盘、磁性随机存储器和磁性传感器等高密度信息存储与传感器件中,法国A.Fert和德国P.Grünberg两位科学家也因为巨磁电阻(GMR)效应的发现获得了年诺贝尔物理学奖。
自旋波是磁性系统中自旋进动过程的集体激发态,其量子化的准粒子称为磁子,每一个磁子携带一个普朗克常量的自旋角动量。与传统金属中的自旋极化传导电子相比,基于自旋波的磁子具有以下的优点:(1)磁子的传递具有无热耗散和低阻尼的特点,在长距离的自旋信息传播中具有显著的优势;(2)磁子的波动属性同时具备了振幅和相位两个特性,可以突破传统的冯·诺依曼体系的逻辑和计算架构,有可能成为后摩尔时代信息传输和处理的重要方式之一;(3)基于磁子的超流、超导、玻色-爱因斯坦凝聚和约瑟夫森等宏观量子效应也成为凝聚态物理的研究热点。在传统的磁子自旋电子学的研究中,微波是最常用的激发和检测的方式。但是,微波器件的尺寸很难实现小型化,因此,要将磁子自旋器件应用到半导体大规模集成电路中,迫切需要发展基于电学方法的磁子自旋激发、调控与探测手段。
至年,中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室M02课题组韩秀峰研究员领导的研究团队,利用磁控溅射技术结合高温热处理工艺经过一系列样品的制备和优化,克服了以往YIG只能在单晶GGG衬底上制备的限制,在Si-SiO2衬底上设计和制备出了Pt/YIG/Pt的重金属/磁性绝缘体/重金属?(HM/MI/HM)层状异质结构,并且首次在该结构中观测到了由亚利桑那大学张曙丰教授团队通过理论预测的磁子拖拽效应,即由于YIG中磁子的激发与传输,一侧Pt层中的电荷/自旋流可以在另一侧Pt层中拖拽出相反的电荷/自旋流。该工作证实了磁性绝缘体可以作为磁子自旋的传输通道[HaoWuandX.F.Hanetal.,Phys.Rev.B93()(R)]。
最近,韩秀峰研究团队又创新性地采用YIG磁性绝缘体作为磁性电极、Au作为中间层、在GGG衬底上异质外延制备了高质量的YIG/Au/YIG这种新型的磁性绝缘体/金属/磁性绝缘体(MI/NM/MI)--磁子阀结构,并且在该结构中首次观测和发现了磁子阀效应(MagnonValveEffect),即通过两层磁性绝缘层的相对磁化方向取向可以调控磁子流的大小。首先,他们通过精细调控两层YIG的晶体结构来产生不同的矫顽力,从而实现反平行的相对磁化取向;采用局域电流加热的方式产生温度梯度,通过纵向自旋塞贝克效应激发YIG中的磁子流,通过磁子阀的磁子流可以通过Pt中的逆自旋霍尔效应来实现电学的测量;进而发现了其中的磁子阀效应,即两层YIG的相对取向可以控制通过该磁子阀的磁子流大小,其中室温下平形态和反平行态的相对磁子阀比值(MagnonValveRatio,MVR)可以达到19%;并且揭示了磁子阀比值的大小主要取决于磁性绝缘体/金属界面的磁子-电子自旋的转换效率,该转换效率的温度依赖关系与理论计算的结果相一致;通过磁子阀比值与Au厚度的依赖关系的拟合,得出Au的自旋扩散长度为15.1nm,与自旋泵浦方法获得的结果相一致[HaoWuandX.F.Hanetal.,Phys.Rev.Lett.(),DOI:
相关链接:
转载请注明:http://www.aideyishus.com/lkgx/14.html